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Abstract
In a number of recent papers, the spectral properties of the Laplacian on
randomly connected graphs have been studied within the replica formalism.
In this letter we show how the replica formalism can be unravelled and we
find an approximation for calculating the density of states which substantially
simplifies the numerical resolution of the equations obtained, whilst giving
results in excellent accord with the exact solution.

PACS numbers: 75.10.Nr, 05.20.−y

In this letter we develop an approximation scheme to solve the functional mean-field equations
arising from the replica calculation for the density of states of the Laplacian on a random graph.
Models based on random graphs are physically appealing as, although they remain mean field,
each site has a finite number of neighbours thus keeping the finite connectedness of finite-
dimensional systems. It was first remarked by Viana and Bray [1] that the spin-glass transition
on a random graph cannot be described in terms of a sole matrix (a zero-by-zero matrix in
the case of the fully connected Sherrington–Kirkpatrick model [2,3]) order parameter and one
is obliged to consider an infinite number of order parameters or equivalently the distribution
function of local fields in the model (equivalent to the generating function for the hierarchy
of order parameters). The price paid for this finite connectivity is therefore an additional
analytic complexity which has hindered the search for the replica symmetry breaking which
has been applied with much success in a large variety of problems [3]. In this letter we consider
the simpler problem of the calculation of the spectrum of the Laplacian on a random graph.
Random-graph problems have also found applications in computer science; see for example [4]
and references therein. Bray and Rodgers [5] were the first to analyse this problem within
the replica formalism and they obtained the mean-field equations arising from the replica
symmetric ansatz; only recently [6] was this equation solved numerically, and then it was
shown via comparison with numerical simulations that (just as in the case of the orthogonal
ensemble [7]) the replica symmetric theory successfully predicts the density of states for this
model. Indeed the rigorous supersymmetric approach also yields the same functional equations
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as are needed to compute the density of states for this model [8]. As pointed out by the authors
of [6], the numerical solution of these equations is a rather delicate affair. In addition it
has been remarked that the techniques used in the resolution of these models can be used
in finite dimensions to calculate the instantaneous normal modes of complex systems [6, 9].
Clearly the resulting equations are an order of magnitude more complex and it is therefore the
purpose of this letter to propose an approximation scheme inspired by an unravelling of the
replica equations and subsequently an approximation based on the central-limit (CL) theorem.
This approximation successfully predicts the presence of oscillations in the density of states
observed in [6, 9] and whilst a numerical solution is necessary the numerics are easy and the
same idea should work in situations where the full functional equations become extremely
difficult to solve numerically. The results are compared with the numerical simulations of [9]
and we find excellent agreement.

The Laplacian on an arbitrary graph is given by the expression

Hij = −δij

∑
k �=i

nik + nij (1)

where nij = nji is equal to one if the points i and j are neighbours and zero otherwise. A
random mean-field graph is constructed by setting nij = nji = 1 with probability p = c/N

and 0 with probability 1 − p; the average connectivity of each point is therefore c. Within the
framework of the replica formalism, the density of states ρ(E) of the Laplacian is calculated
by considering the replicated partition function [5, 6, 9]:

Zn =
∫

dφa
i exp

[
−1

2

∑
a,i,j

φa
i (E − H)ijφ

a
j

]
. (2)

In the limit of large N , the replicated partition function may be calculated by the saddle-point
method, yielding

Zn ∼ exp(S[p(σ)]) (3)

with

S[p(σ)] = −
∫

p(σ) log(p(σ )) dσ + µ

∫
p(σ) dσ − c

2

+
c

2

∫
p(σ)p(σ ′) exp

(
−1

2
(σ − σ ′)2

)
dσ dσ ′ (4)

where p(σ) is a probability distribution on R
n and µ is the Lagrange multiplier ensuring that∫

p(σ) dσ = 1 [9]. The density of states may be extracted as

ρ(E) = 1

π
lim
n→0

Im
∫

p(σ)
σ 2

n
dσ (5)

where E is understood to have an infinitesimal imaginary component. The saddle-point
equation for p(σ) is easily obtained as

p(σ) = exp

(
µ + c

∫
p(σ ′) exp(− 1

2 (σ − σ ′)2) dσ ′
)

. (6)

In [5] the n-goes-to-zero limit was taken within the replica formalism and in a recent paper [6]
an equivalent equation was solved numerically. As pointed out in [6], the numerical resolution
is rather difficult in this case and its structure is rather opaque. An alternative approach is to use a
single-defect approximation as introduced in [9]. Here we reformulate the problem, providing
an alternative approach to the numerical resolution of the problem but most importantly a
natural approximation to the density of states.
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We proceed by making a replica spherical (and thus replica symmetric) ansatz for p as
in [5, 6, 9]. We express p as a sum of Gaussians:

p(σ) =
∫

w(a) exp

(
−σ 2

2a

)
da. (7)

The normalization of p induces a normalization on w such that
∫

w(a) da = 1. With this
ansatz, integrating the equation (6) over σ implies µ = −c.

The resulting equation for w is∫
w(a) exp

(
−σ 2

2a

)
da =

∞∑
n=0

ρn

∫ n∏
i=1

w(ai) dai exp

(
−1

2
σ 2

n∑
i=1

1

ai + 1
− 1

2
Eσ 2

)
(8)

where ρn = e−ccn/n!. If we assume that the Gaussian transform on w can be inverted, one
finds

w(a) =
∞∑

n=0

ρn

∫ n∏
i=1

w(ai) dai δ

(
a − 1

E +
∑n

i=1
1

ai+1

)
. (9)

This equation is not much simpler than the original equation; however, the n-goes-to-zero limit
has been taken easily and we now have a probabilistic interpretation for (9). One may interpret
w as the fixed-point probability distribution for the iteration

a = 1

E +
∑N

i=1
1

ai+1

(10)

where N is a random variable distributed according to the distribution ρn, i.e. it is Poissonian of
mean c. The distribution of w can be calculated numerically rather efficiently via a population
dynamics (on an ensemble of complex numbers) using the recurrence (10). We have verified
that doing this reproduces the numerical simulation results of [4] if one chooses a large enough
population and lets the dynamics run for sufficiently long time. Note that when we are in the
spectrum, a has a non-zero imaginary part.

We now proceed to an approximate treatment of this problem. It is useful to make a change
of variables:

a = ω

1 − ω
(11)

where the induced recurrence for ω is now

ω = 1

N + 1 + E − ∑N
i=1 ωi

. (12)

For c large, we may appeal to the CL theorem and make the approximation

ω = 1

N + 1 + E − Nω
. (13)

Taking the average of (13) over N then yields

ω =
∞∑

n=0

ρn

1

n + 1 + E − nω
. (14)

The advantage of the approximation used here is that it gives an equation for a single complex
variable, ω, which is straightforward to solve numerically. The density of states ρ(E) in this
notation is given as

ρ(E) = 1

π
Im a (15)
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Figure 1. Comparison of the CL theorem approximation versus the numerical data of [9] for the
density of states ρ(E) for c = 20.

where the average value of a, a, is given in terms of ω by

a = ω/(1 − ω). (16)

One may not replace ω by ω in equation (16), as it is not consistent with the CL-theorem-based
approximation (13); using the recurrence equation for ω (12), one finds that within the context
of this approximation

a =
∞∑

n=0

ρn

1

n + E − nω
. (17)

Shown in figure 1 (in units where E is rescaled by a factor 1/c) is the comparison of the
CL approximation with the numerical results of [9] for random graphs of mean connectivity
c = 20; one sees that this approximation is excellent in the centre of the spectrum and at large
energies. Only at small energies (corresponding to sites of small connectivity where the CL
approximation should break down) does one see any appreciable deviation. At large energies
the oscillations in the density of states are reproduced with a slight shift to the right with respect
to the numerical simulations. The results in the centre of the spectrum are in perfect agreement
with the numerical results.
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